
All About Oracle Sequences

Copyright © 2019 Oracle and/or its affiliates.1

Chinmayi Krishnappa

Consulting Member of Technical Staff

DST, Oracle

Background
• What?

• Oracle sequences are unique number generators that follow a user defined order
(ascending/descending, step, cycle, etc)

• Why?
• Introduced in ver 6
• Application workarounds require higher level serialization
• Many applications simply require that identifiers are unique

• Tradeoffs
• Does not guarantee commit time ordering
• Gaps in the case of rollback, process, instance, or system failure
• Loss of global ordering in RAC settings

• GUARANTEE : unique values!

Copyright © 2019 Oracle and/or its affiliates.2

Syntax
• Create sequence <name> <attributes>;

• Cache <n>|nocache, order|noorder,
• keep|nokeep, session|global,
• cycle <n>, start with <n>, increment by <n>, minvalue <n>, maxvalue

<n>
• scale|noscale <extend|noextend>

• Alter sequence <name> <attributes>;
• Restart <start with <n>

• NEXTVAL and CURRVAL
• Select <sequence_name>.nextval from dual;
• Select <sequence_name>.currval from dual;

Copyright © 2019 Oracle and/or its affiliates.3

Usage
• Typically used to generate automatic primary keys for tables
• Ordering (e.g. ids for a reservation system)
• Generate unique number

• CREATE TABLE t1 (id NUMBER GENERATED [ALWAYS|BY DEFAULT|BY
DEFAULT ON NULL] AS IDENTITY);

• Pre 12g: Create a sequence, create a BEFORE INSERT trigger, and call the
NEXTVAL value of the sequence within the trigger

Copyright © 2019 Oracle and/or its affiliates.4

KEEP attribute and dbms_shared_pool.keep

• KEEP|NOKEEP
• Relates to Application Continuity (12.1)
• KEEP generate the same sequence value during replay.
• Default: NOKEEP

• DBMS_SHARED_POOL.KEEP
• Keeps the sequence object pinned in the shared pool
• Useful for hot sequence objects when

• Shared pool is not appropriately sized, and/or
• Busy workload that ages out objects frequently

Copyright © 2019 Oracle and/or its affiliates.5

Sequence Cache

• Cached (CACHE <n>) and Uncached (NOCACHE) sequences
• Default: cached, with a cache size of 20
• Cache is instance local and ordered across sessions
• Reduces round trips to disk

• Tradeoff: can lose a cache of sequence numbers with
session/instance failures

Copyright © 2019 Oracle and/or its affiliates.6

Ordered and Unordered sequences

• Sequences are unordered by default
• Ordered sequences (ORDER) enforce strict ordering of values across

sessions
• Use of ordered sequence on RAC is discouraged

• Requires a DLM lock for every nextval

• Ordered sequences are almost always cached
• How does ordering work with instance local caches?

Copyright © 2019 Oracle and/or its affiliates.7

Synchronization points

• Latch (sequence cache)
• Protects access to the instance local cache

• Enqueue (SQ) for cache replenishment
• Protects sequence row cache (dc_sequences)
• Increase cache size

• SV (ordering)
• Alter sequence to be unordered
• Increase cache size (something SQ contention shows up as SV)

Copyright © 2019 Oracle and/or its affiliates.8

Recent performance bottlenecks

• Customer 1
• Moving from a single instance to RAC
• 2-node active-passive RAC cluster with ordered sequence primarily used on

one instance
• Average SQ enqueue wait time of 2 seconds

• Customer 2
• 2-node RAC on 11.2.0.4, moving to X8 Exacs
• Cannot get rid of ordered sequence for historic reasons
• Average SV enqueue wait time shot up from 5 ms to 150 ms

Copyright © 2019 Oracle and/or its affiliates.9

Unordered sequences

obj# cache highwatermark

2103 20 60
Copyright © 2019 Oracle and/or its affiliates.10

DC_SEQUENCES

SQ Enqueue
(cache replenishment)

1 2 3 4 .. 20Cache

Instance 1

Kgl latch

Sessions

21 22 23 24 .. 40Cache

Instance 2

S1 S2 S3

latch

Sessions

1 2 3 4 .. 20Cache

Instance 1

S1 S2 S3

latch

Sessions

1. Latch serializes access to instance
local cache

2. If cache depleted, get the SQ
enqueue to replenish the cache

Ordered sequences share the cache

obj# cache highwatermark

2103 20 60
Copyright © 2019 Oracle and/or its affiliates.11

DC_SEQUENCESSQ Enqueue

1 2 3 4 .. 20Cache

Instance 1

Kgl latch

Sessions

1 2 3 4 .. 20Cache

Instance 2

S1 S2 S3

latch

Sessions

41 42 43 44 .. 60Cache

Instance 1

S1 S2 S3

latch

Sessions

LCK0

SV, NULL mode

LCK0

SV, NULL mode

SV nextval : 44

41 42 43 44 .. 60

1. Get SV enqueue
2. Read nextval from lock value
3. Adjust instance cache such that

nextval falls within cache boundaries
4. If cache depleted, replenish under SQ
5. Write new nextval to lock value
6. Release SV enqueue

Planned

• Dynamic cache resizing (21)
• Elastically grow/shrink the cache based on usage

• Future work
• Ideas to reduce SV contention

Copyright © 2019 Oracle and/or its affiliates.12

Scalable Sequences

Copyright © 2019 Oracle and/or its affiliates.13

Scalable Sequences - Motivation

• Index on column populated using a sequence generator results in a
right growing index

• Last leaf block is a hot spot leading to contention

• Traditional ways to reduce contention:
• A large CACHE value results in statistical affinity of index leaf blocks to

instances
• A reverse key index exchanges a single hot block for many cold blocks
• A global index partitioned by hash reduces contention

Copyright © 2019 Oracle and/or its affiliates.14

Scalable Sequences - Motivation

• Limitations of prior approaches

• A large CACHE value does not reduce index leaf block contention on single
instance and SMP systems

• A reverse key index usually reduces contention but at the expensive of a
dramatic increase in expensive physical reads and writes

• A global index partitioned by hash does not improve affinity of index leaf
blocks to instances

Copyright © 2019 Oracle and/or its affiliates.15

Scalable Sequences

• Ideal Solution
• Reduced contention without the penalty of significant increases in physical

reads and writes
• Affinity of index leaf blocks to instances for a Real Application Clusters

database
• Affinity of index leaf blocks to processes for an SMP system
• No requirement for application modifications

Copyright © 2019 Oracle and/or its affiliates.16

Scalable sequence - Internals

• A numeric offset is prefixed to nextval
• iii||sss, where
• iii => (instance_id % 100) + 100
• sss => by (session_id % 1000)

• The most significant “1” in the prefix prevents duplicates
• 100||100||12, where instance offset=100, session offset=100.
• 100||000||10012 , where instance offset=100, session offset=000.
• Without the leading “1”, these values are essentially duplicates.

Copyright © 2019 Oracle and/or its affiliates.17

Scalable Sequences – NOEXTEND

• NOEXTEND (default)

• values have same number of digits as maxvalue/minvalue

• useful for integration with existing applications

• If maxvalue = 1000000, then nextvals are iii||sss||1, iii||sss||2, … , iii||sss||9,
followed by an error

Copyright © 2019 Oracle and/or its affiliates.18

Scalable Sequences – EXTEND

• NOEXTEND (default)
• values have same number of digits as maxvalue/minvalue
• useful for integration with existing applications
• If maxvalue = 1000000, then nextvals are iii||sss||1, iii||sss||2, … , iii||sss||9,

followed by an error

• EXTEND
• Nextvals are all of length (x+y), where x is the length of the scalable offset (6),

and y is the length of maxvalue/minvalue.
• If maxvalue=100, then nextvals are of the form iii||sss||001, iii||sss||002,

…,iii||sss||100

Copyright © 2019 Oracle and/or its affiliates.19

Scalable sequences -Syntax

• CREATE/ALTER sequence
• { SCALE {EXTEND | NOEXTEND} | NOSCALE}
• Create sequence s1 scale; //noextend
• Alter sequence s1 scale extend;

• NOSCALE disables sequence scalability
• If any scaled values were returned, then we run the risk of generating a

duplicate
• Solution: Hwm on disk is prefixed with the largest possible prefix (199999)

• Not recommended with ordered sequences

Copyright © 2019 Oracle and/or its affiliates.20

Scalable sequence - examples

• Maxvalue = 1000000, increment = 1
• Instance offset 123, session offset 789

• scale noextend:
• 11237891, 11237892, …,11237899 <error>

• scale extend:
• 11237890000001, 112378900000002, …11237890000009,….,

Copyright © 2019 Oracle and/or its affiliates.21

Sequences on ADG

• Standby never updates hwm on
disk

• Sequence on standby always gets
a cache of values from the
primary.

Copyright © 2019 Oracle and/or its affiliates.22

Primary Standby

Standby cache

RMI call

Parallel dml

• update /*+ enable_parallel_dml parallel(3) */ table1 set id =
seq1.nextval;

Copyright © 2019 Oracle and/or its affiliates.23

1 2 .. 10 .. 20Instance Cache

p1 p2 p3

latch

Parallel workers

1 2 3 4 5 6 7 8 9

Session Sequence & Restart

• Session sequence numbers are local to session
• Create sequence seq1 session;
• Automatic restart for every new session

• 1, 2, 3, 4, <new session>, 1, 2, 3, 4

• RESTART (18c)
• 1, 2, 3, 4, 5
• Alter sequence seq1 RESTART [START WITH 4];
• 4, 5, 6, 7

Copyright © 2019 Oracle and/or its affiliates.24

Monitoring Sequence Usage

• user_sequences, all_sequences, dba_sequences
• scale, extend flags

• v$_sequences
• cache_size, nextvalue, order_flag, highwater

• Tracing
• event="10290 trace name context forever, level <1-5>"

Copyright © 2019 Oracle and/or its affiliates.25

Questions?

Copyright © 2019 Oracle and/or its affiliates.26

