
liron@gotodba.com

@amitzil

https://gotodba.com

Liron Amitzi

 Liron Amitzi

 Oracle DBA since 1998 (and Oracle 7)

 Database consultant since 2002

 Oracle ACE

 An independent senior DB consultant

 Recently moved to Vancouver, BC

 BCOUG president

3 Membership Tiers
• Oracle ACE Director
• Oracle ACE
• Oracle ACE Associate

bit.ly/OracleACEProgram

500+ Technical
Experts Helping
Peers Globally

Connect:

Nominate yourself or someone you know: acenomination.oracle.com

@oracleace

Facebook.com/oracleaces

oracle-ace_ww@oracle.com

mailto:oracle-ace_ww@oracle.com

This session is based on a true story

table and column names have been

changed to protect the innocent

 This happened more than 10 years ago, but is still

relevant

 A dashboard query took about 4 minutes and timed out

 Spoiler alert - at the end of the process the query took 8

seconds

 Understanding the application design - but why?

 Understanding the query logic - but why?

 Understanding the query code - OK I get that one

 Understanding what Oracle does - sounds reasonable

 Trying to help Oracle do something better - how?

 Monitoring system

 Endpoints are sending

many alerts

 After 100 alerts per

endpoint old alerts are

moved to ALERT_HIST

ALERT_CURR
(100 alerts per

endpoint)

ALERT_HIST

Endpoint1
Endpoint2

Endpoint3

Endpoint4

Endpoint5

Date Endpoint …

10-OCT-18 2:00:00 1

10-OCT-18 2:00:00 1

10-OCT-18 2:00:00 2

10-OCT-18 2:00:02 2

10-OCT-18 2:00:02 2

SEQ

1

2

3

4

5

 Alerts were coming quickly, so they

added a sequence to ensure order

 PK was SEQ, date and endpoint_id

 We couldn't change the base design

(history structure) but were allowed

to change anything else

 Partitions could be great here, but

this was SE...

 Dashboard shows

300 rows

 Users could add

predicates

 Common predicate on date

 Results ordered by SEQ

App ALERT_CURR

ALERT_HIST

Query

300 rows?

Query

More rows

 When the app could not find

300 rows in ALERT_CURR

it queried ALERT_HIST

 In many cases it just took too long

App ALERT_CURR

ALERT_HIST

Query

300 rows?

Query

More rows

select * from

(select *

from <tab>

where <filter>

order by seq desc

)

where rownum<=300;

 Was created only to make sure the order is preserved

 Today I would use timestamp

 Query often had a predicate on the date and order by

SEQ

 We had PK (SEQ, date, endpoint_id) and a regular index

(date)

 When we use predicate on date, what will Oracle do?

Range index scan on the date index:

1. Filter rows by the index

2. Fetch the rows by index rowid

3. Sort the result set

4. Return first 300

Full index scan on the primary key:

1. Scan the entire index in descending order

2. Check if the date is in the range

3. Get the first 300 rows that match

4. Fetch the rows by index rowid

 Oracle decided to use the PK to scan the SEQ column

ordered

 Since SEQ value is not important, we changed the PK:
◦ The old PK was SEQ, date, endpoint_id

◦ The new PK was date, SEQ, endpoint_id

 We also added the date to the order by

 That way Oracle used the index for both predicate and

sort

select * from

(select *

from <tab>

where <filter>

order by date desc, seq desc

)

where rownum<=300;

 Wait a second!

 The design is based on numbers per endpoint, while the

dashboard queries the latest

 There is a bug if one endpoint send many alerts while the

others don't

 Dashboard might show wrong data as new data is already

in ALERT_HIST

 ALERT_HIST can contain alerts that are newer than some

alerts in ALERT_CURR

 We had to query ALERT_HIST every time, which made

the problem even worse!

select * from

(select * from

(select * from alert_curr

union all

select * from alert_hist

)

where <filter>

order by date desc, seq desc

)

where rownum<=300;

 After fixing all of this, the query was still slow...

 The indexes were not being used optimally

 The union and order by resulted in a lot of work on

Oracle's side

 Returning 300 rows after sort requires a full sort operation

 Any ideas?

 We realized that we need 300 rows in the end

 That's 300 from the first table, or 300 from the second, or

any combination of the two

 Let's limit each table to 300 rows efficiently and then take

the top 300

 Makes sense?

select * from

(select * from

((select * from

(select * from alert_curr where <filter> order by date*,seq*)

where rownum<=300)

union all

(select * from

(select * from alert_hist where <filter> order by date*,seq*)

where rownum<=300)

)

where <filter> order by date*, seq*)

where rownum<=300;

* - desc order

 The query that took 4 minutes at the beginning now took

about 8 seconds

 Index range scan was very efficient (used for both date

predicate and order by)

 There is a single order by operation of only 600 rows

 A successful project and a very satisfied customer

 We do need to understand the logic

 We do need cooperation from the developers, we are not

magicians

 Without understanding the system we could not:
◦ Find and fix the bug in the logic

◦ Change the PK (what if there was a reason for SEQ to be first?)

Liron Amitzi

liron@gotodba.com

@amitzil

https://gotodba.com

